1+1 Photon Absorption Processes and New Photoinitiators

Kyle Haas
3D Printing with Light
March 13th, 2023

Papers Sourced

ARTICLES

https://doi.org/10.1038/s41566-021-00906-8

pubs.acs.org/journal/apchd5

Perspective

Two-step absorption instead of two-photon absorption in 3D nanoprinting

Vincent Hahn 6,2 M, Tobias Messer 1, N. Maximilian Bojanowski², Ernest Ronald Curticean³, Irene Wacker⁴, Rasmus R. Schröder^{3,4}, Eva Blasco^{2,4,5} and Martin Wegener ^{1,2}

2021

Challenges and Opportunities in 3D Laser Printing Based on (1 + 1)-**Photon Absorption**

Vincent Hahn, N. Maximilian Bojanowski, Pascal Rietz, Florian Feist, Mariana Kozlowska, Wolfgang Wenzel, Eva Blasco, Stefan Bräse, Christopher Barner-Kowollik, and Martin Wegener*

2023

RESEARCH ARTICLE

www.afm-journal.de

Search for Alternative Two-Step-Absorption Photoinitiators for 3D Laser Nanoprinting

N. Maximilian Bojanowski, Aleksandra Vranic, Vincent Hahn, Pascal Rietz, Tobias Messer, Julian Brückel, Christopher Barner-Kowollik, Eva Blasco, Stefan Bräse, and Martin Wegener*

2022

Free-Radical Photopolymerization

Initiation

$$Initiator + h_{
u} \longrightarrow \mathrm{R}^{ullet} \ \mathrm{R}^{ullet} + \mathrm{M} \longrightarrow \mathrm{RM}^{ullet}$$

Propagation

$$\mathrm{RM}^{ullet} + \mathrm{M}_n \longrightarrow \mathrm{RM}_{n+1}^{ullet}$$

Termination

combination

$$\mathrm{RM}_n^{ullet} + {}^{ullet}\mathrm{M}_m\mathrm{R} \longrightarrow \mathrm{RM}_n\mathrm{M}_m\mathrm{R}$$

disproportionation

$$\mathrm{RM}_n^{ullet} + {}^{ullet}\mathrm{M}_m\mathrm{R} \longrightarrow \mathrm{RM}_n + \mathrm{M}_m\mathrm{R}$$

Free-Radical Photoinitiation

Abstraction

Cleavage

Benzil dimethyl acetal

Example Process

Initiator
$$\xrightarrow{\Delta}$$
 2 In•

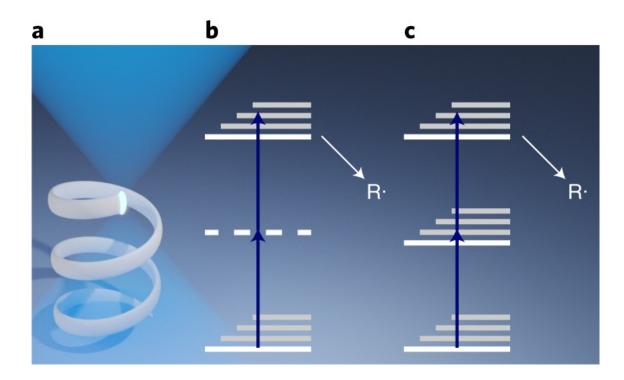
In• + \Longrightarrow R

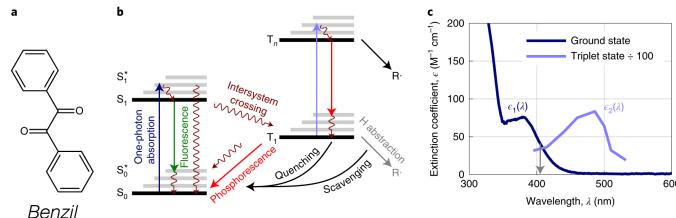
In \longrightarrow R

Termination

Problem:

without non-linear reactions with photo-intensity, exposure dose accumulates along the optical path rendering precision control impossible.


Two-Photon Absorption vs. Two-Step Absorption

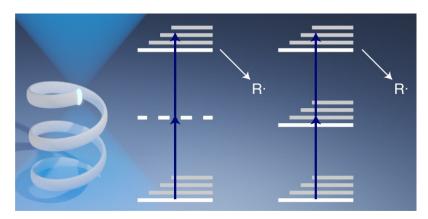

B) Two Photon Absorption (established)

- Enables D ∝ I²
 - Quadratic relationship implies smaller voxel size for more focused exposure and cross-linking
- Electrons are excited to a virtual state, which only exists when light is applied continuously
- Another photon provides the missing energy to complete the excitation

C) Two-Step Absorption (new)

- There is a real electronic state for the electron to occupy.
- Can use the same photoinitiator and one or two colors

Quenching: anything that reduces fluorescence intensity (O₂) Scavenging: reducing hydrogen concentration


Pros and Cons

Two-Photon Absorption

Cons

- Laser cost: mode-locked pico- or femtosecond lasers (10¹² W/cm²)
 - Tens of thousands of euros
- Size of femtosecond lasers is large
- Microexplosions
 - 3-4 photons absorbed creates high population of high-energy states.
 - Laser power at which this occurs varies.

Two-photon processes are still limited in commercial scope

Two-Step Absorption (new)

Lifetime of electrons is determined by non-radiative decay (much longer than virtual-state lifetime)

Pros

- Can use continuous laser systems with μW level doses
 - More efficient process due to longer excitation lifetimes
 - Tens of euros, not tens of thousands.

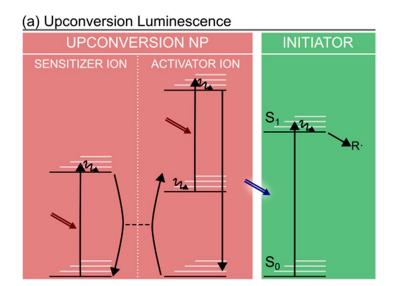
Cons

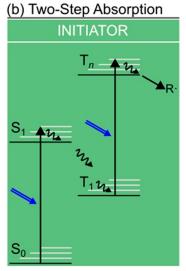
- Added chemical complexity
- A single absorption may prematurely trigger a polymerization reaction
- Non-linear exposure scalability
 - Real state decay lifetime, $\tau = k_D^{-1}$
 - For $tk_D << 1 \rightarrow D \propto t^2l^2$
 - For $tk_D \approx 10 \rightarrow D \propto tl^2$

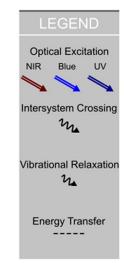
1+1 Absorption (D \propto I²)

Two-Step Absorption (B)

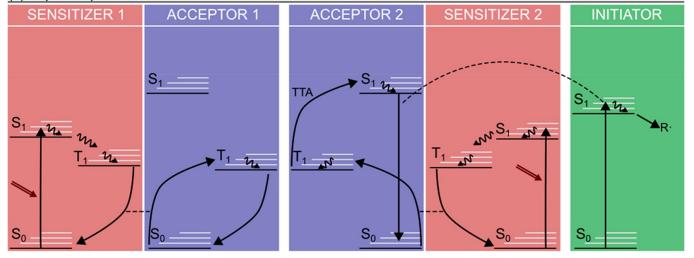
 Two photons generate a total excited state with sufficient energy for radicalization

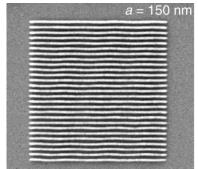

Upconversion Luminescence (A)

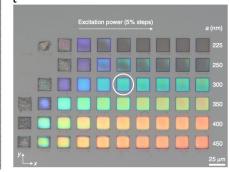

- Two photons generate a single ultraviolet photon that's then absorbed by an initiator
- Voxel size is proportional to absorption length of UV photon
- UV emission probability


 I²

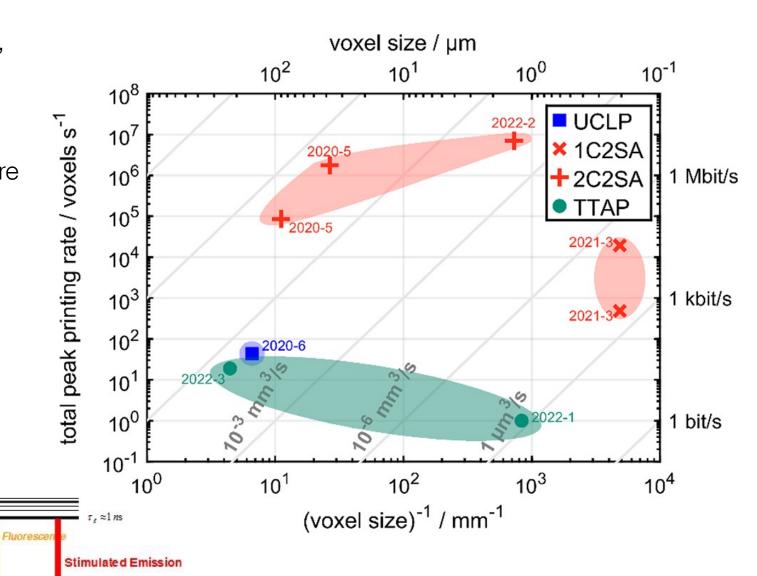
Triplet-Triplet Annihilation (C)


- Two photons fuse energy; one acceptor generates a higher energy photon, sending the other emitter back to ground state.
- Requires a large concentration of sensitizers and excited acceptors, as two molecules need to be proximal
- Diffusion dependent process, determined by photoresin viscosity





Comparison of (1+1) Techniques


- All can use lower power lasers (10-10⁶ W/cm², rather than 10¹²)
- All suffer from proximity effect / dose accumulation in unwanted areas
- Upconversion and triplet-triplet annihilation are slowest.
- Voxel size
 - Upconversion: ~150um
 - TTA 1um
 - 1C, Two-Step with STED 150nm

1C-2SA For 150nm, 670 voxel/s used (Larger structures, 2400-19,400 voxel/s)

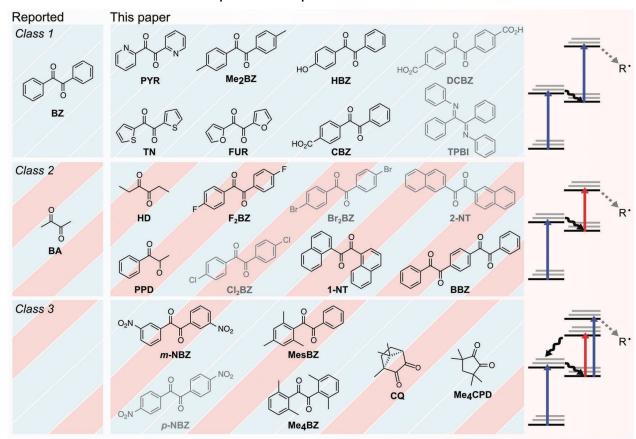
Absorption

Two-step absorption instead of two-photon absorption in 3D nanoprinting Challenges and Opportunities in 3D Laser Printing Based on (1+1)- Photon Absorption

Photoinitiators

Desired Properties

- Balance of triplet (intermediate)-state excitation lifetime
 - High lifetime implies high sensitivity but low printing speeds
- High absorbance
- Low diffusion lengths (physical and optical)
- No side-reactions


Theoretical predictions of reactivity between scavengers, (1+1) photoinitiators, scavengers, and quenchers:

not completed

Tuning Properties for Non-Linear Absorption

- Photoinitiator absorption bands often shift with solvent polarity and pH values
- Photoinhibitors (not done for (1+1))
- Photothermal component (gold nanoparticle) for nonlinear localized polymerization

Two-Step Absorption Photoinitiators

Classes:

one-color two-step absorption, two-color two-step absorption, and one-color two-step absorption combined with a depletion process. Colors: blue for 405 nm and red for 640 nm.

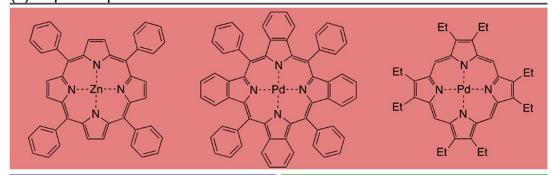
Thank you!

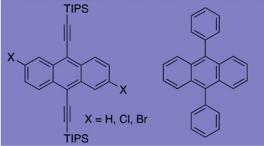
Molecules Used

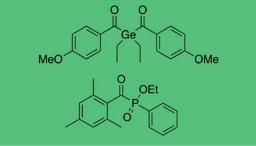
- Upconversion luminescence
 - Inorganic host matrix dopes with lanthanide ions (e.g., Yb⁺³/Er⁺³)
- Two-strep absorption
 - Benzil, spiropyran
- Triplet-triplet annihilation
 - Sensitizers: porphyrins
 - Acceptors: anthracene derivatives

(a) Upconversion Luminescence

K ₂ YbF ₅ :Tm	NaYF₄:Yb,Tm	NaYF ₄ :Yb,Tm@SiO ₂
	OLI	F Cp Cp F

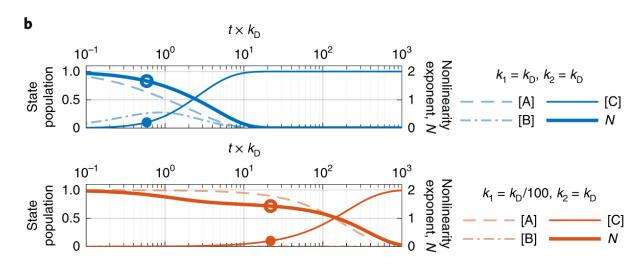

(b) Two-Step Absorption

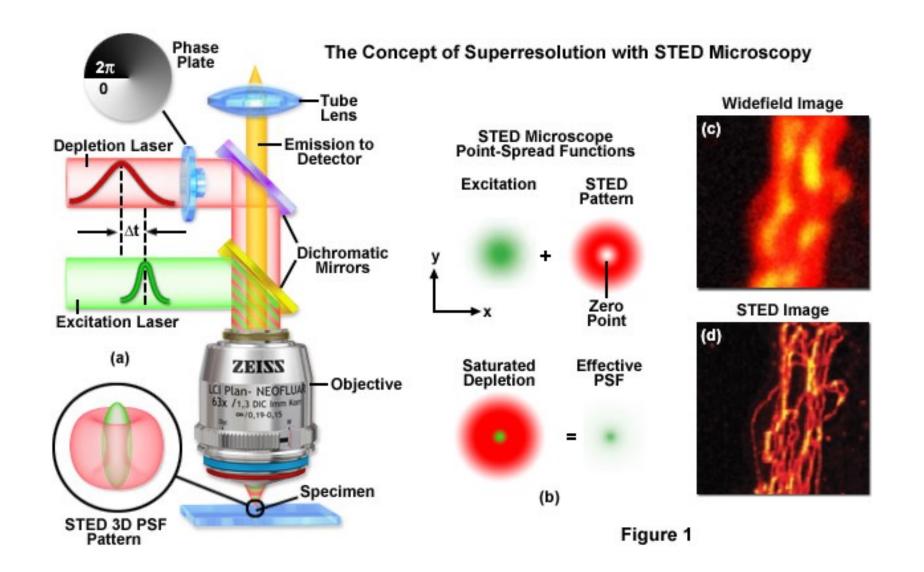

$$R = Ph \text{ or } Me$$


$$R = Ph \text{ or } Me$$

$$R = Ph \text{ or } Me$$


(c) Triplet-Triplet Annihilation


Photoinitiation: Benzil


Extinction coefficient; how strongly a chemical species absorbs light

- Higher extinction = more strong absorption.
- Lower ground state extinction means 300um light travel before significant absorption; enables "dip-in 3D Printing".

With triplet state 100x higher extinction, relatively efficient absorption of second-excitation reaction.

Stimulated Emission Depletion - STED

